HECKE ACTIONS ON BRAUER GROUPS

Timothy J. FORD

Depart nent of Mathematics, Florida Atlantic University, Boca Raton, FL 33431, USA

Communicated by H. Bass Received 11 April 1983

This paper draws a connection between a recent paper of DeMeyer [2] and an independent paper by Roggenkamp and Scott [11]. In [2] DeMeyer extends an earlier result of Janusz [5] by defining an action of a group G of automorphisms of a commutative ring S on its Brauer group B(S). He then uses Amitzur cohomology to extend this action to the étale cohomology groups of the ring $H^n(S, G_m)$ with coefficients in the group of units G_m . In [11] Roggenkamp and Scott extend results of Perlis [10] by defining a contravariant additive functor from the Hecke category \mathscr{H}_G to the category of abelian groups (the objects of \mathscr{H}_G are the $\mathbb{Z}G$ -modules $\mathbb{Z}G/H = \mathbb{Z}G \otimes_{\mathbb{Z}H} \mathbb{Z}$ for subgroups H of G and the morphisms of \mathscr{H}_G are $\mathbb{Z}G$ -module homomorphisms). Their functor sends $\mathbb{Z}G/H$ to $\mathrm{Pic}(S^H)$. In case G is finite they use Zariski derived functor cohomology to prove this. For the case when G is infinite they use 'generators and relations' for the category $(\mathscr{H}_G)^{\mathrm{op}}$ dual to \mathscr{H}_G . Recall that for an affine scheme $X = \mathrm{Spec } S$ the étale cohomology groups have the following interpretation for low n:

$$H^0(X, G_m) = \text{units of } S = S^*,$$

 $H^1(X, G_m) = \text{Picard group of } S = \text{Pic } S,$
 $\text{tors } H^2(X, G_m) = \text{Brauer group of } S = B(S).$

In this paper we define a contravariant additive functor from \mathscr{K}_G to the category of abelian groups which sends $\mathbb{Z}G/H$ to the Brauer group $B(S^H)$ when S is a Galois extension of R with (finite) group G. The maps on Azumaya algebras are defined explicitly. If O and O are the only idempotents of O, then this functor extends to $\mathscr{K}_{Gal(S/R)}$ where O is the separable closure of O. We also show that there is a contravariant additive functor

$$\Phi^n: \mathcal{H}_G \to \text{abelian groups}$$

given by $\Phi^n(\mathbb{Z}G/H) = H^n(S^H, G_m)$. In this case we use Čech étale cohomology. Thus, when S/R is Galois we extend the results of Roggenkamp and Scott. Noting that $\operatorname{Hom}_G(\mathbb{Z}G,\mathbb{Z}G) \cong \mathbb{Z}G$ we also get DeMeyer's action of $\mathbb{Z}G$ on B(S).

12 *T.J. Ford*

Throughout unadorned tensor products are over S. If H is a subgroup of G, then we write $H \le G$. The set of all double cosets HgK will be denoted $H \setminus G/K$ for subgroups H, K of G. All other terminology will be as in [9]. The author wishes to thank F.R. DeMeyer for some helpful suggestions.

To define an additive functor on \mathscr{H}_G one has to give its values for three types of maps: 'corestriction', 'restriction', and 'conjugation' and verify that these homomorphisms satisfy several relations [12]. Let S and R be commutative rings and assume that S is Galois over R with group G [4, p. 84]. For any pair of subgroups $H \leq K \leq G$ and element g in G we will define three homomorphisms

$$\operatorname{cor}^K : B(S^H) \to B(S^K)$$
 (corestriction),
 $\operatorname{res}_H : B(S^K) \to B(S^H)$ (restriction),
 $\operatorname{con}^g : B(S^H) \to B(S^{gHg^{-1}})$ (conjugation).

Since $S^K \leq S^M$, res is induced by the action $A \to A \otimes_{S^K} S^M$ for A an Azumaya S^K -algebra.

Since g induces an isomorphism

$$g|_{S^H}: S^H \to S^{gHg^{-1}}$$

we have an induced isomorphism on Brauer groups $B(S^H) \cong B(S^{gHg^{-1}})$. If A is an Azumaya S^H -algebra, then $\cos^g(|A|) = |A \otimes_{S^H} S^{gHg^{-1}}|$. Now we define cor. This is a generalization of the norm map given in [8]. For any S-module M and g in G we define gM to be the S-module which is isomorphic to M as abelian groups and whose S-module action is given by $s*m=g^{-1}(s)m$. If M is an S-algebra, gM is equal to M as rings and equal to M as an M-module. Let M be an M-module. Then for any M in M in M is an M-module.

$$_{x}S \bigotimes_{S} ^{H} A \cong _{v^{-1}x}S \bigotimes_{S} ^{H} A$$

of S-modules. To see this just check that y induces an isomorphism of left S-modules ${}_{x}S\cong_{y^{-1}x}S$ and simultaneously of right S^H -modules. Then $y\otimes 1$ is an isomorphism. Now let $X=\{x_1,\ldots,x_k\}$ be a full set of left coset representatives of H in K. Let A be an S^H -algebra and $B=S\otimes_{S^H}A$. Let $B=\bigotimes_{X_X}B=_{x_1}B\otimes\cdots\otimes_{x_k}B$. If y is in K, then y induces a permutation of the set X. Also y induces a map of S-algebras ${}_{x}B\to_{y^{-1}x}B$. From the above, y induces an automorphism of B. It is known, [1] or [8], that if A is an Azumaya S^H -algebra, then B is an Azumaya S-algebra, B^K is an Azumaya S^K -algebra and $B=S\otimes_{S^K}B^K$. To show that the correspondence $A\to B^K$ induces cor we have to show that the image of $\operatorname{End}_{S^H}(P)$ for P an S^H -progenerator is of the form $\operatorname{End}_{S^K}(P')$ for P' an S^K -progenerator. Let $P'=P\otimes_{S^H}S$ and $P'=\bigotimes_{X_X}P'$. Then P and P' are S-progenerators. By Galois descent [7], $P'=S\otimes_{S^K}P'^K$. Thus P'^K is an S^K -progenerator [7, Lemma 3.6]. Now let $A=\operatorname{End}_{S^H}(P)$. Then $B=\operatorname{End}_{S}(P')$ and $B=\operatorname{End}_{S}(P')$ [2, Lemma 1(b)]. Thus $B^K=\operatorname{End}_{S^K}(P'^K)$ and we see that $A\to B^K$ induces the homomorphism cor.

Proposition 1. Let H, K, L, D be subgroups of G, g, g' elements of G and g in $B(S^H)$. Then the homomorphism cor, res, con defined above satisfy the following axioms.

(G.1)
$$\operatorname{cor}^{H}(y) = y$$
, $\operatorname{cor}^{L} \operatorname{cor}^{K}(y) = \operatorname{cor}^{L}(y)$ if $H \le K \le L$.

(G.2)
$$\operatorname{res}_K(y) = y$$
, $\operatorname{res}_D \operatorname{res}_H(y) = \operatorname{res}_D(y)$ if $D \le H \le K$.

(G.3)
$$\operatorname{con}^{g'}\operatorname{con}^{g}(y) = \operatorname{con}^{g'g}(y), \quad \operatorname{con}^{h}(y) = y \quad \text{if } h \text{ is in } H.$$

(G.4)
$$\operatorname{con}^{g}\operatorname{cor}^{K}(y) = \operatorname{cor}^{gKg^{-1}}\operatorname{con}^{g}(y),$$
$$\operatorname{con}^{g}\operatorname{res}_{H}(y) = \operatorname{res}_{gHg^{-1}}\operatorname{con}^{g}(y) \quad \text{if } H \leq K.$$

(G.5) (Mackey Formula) If H and K are subgroups of L, then

$$\operatorname{res}_{K}\operatorname{cor}^{L}(y) = \sum_{KgH} \operatorname{cor}^{K}\operatorname{res}_{ghg^{-1} \cap K}\operatorname{con}^{g}(y)$$

where g runs over a full set of representatives of the double cosets KgH in $K \setminus L/H$.

(c)
$$\operatorname{cor}^{K}\operatorname{res}_{H}(y) = [K:H]y \text{ if } H \leq K.$$

Proof. The above axioms follow from Galois descent and looking at the appropriate commutative diagrams. We will check the Mackey Formula and leave the rest to the reader. Let H and K be subgroups of L. Let KxH be a double coset in $K \setminus I/H$. Let A be an S^H -module and $B = S \otimes_{S^H} A$. Let X be a full set of left coset representatives for H in L. Then X is a disjoint union of the sets $X \cap KxH$ and we can choose X to begin with so that $Y_x = (X \cap KxH)x^{-1}$ is a full set of left coset representatives for $xHx^{-1} \cap K$ in K. Therefore we have

$$\bigotimes_{X} {}_{X}B = \bigotimes_{KxH} \left(\bigotimes_{y \text{ in } Y_{x}} {}_{yX}B \right) \tag{1}$$

where the tensor product \bigotimes_{KxH} is taken over S^K and the other two are over S. The image of A under 'corestriction' to S^L and 'restriction' to S^K is $(\bigotimes_X B)^L \bigotimes_{S^L} S^K$. The image of A under 'conjugation' by x, 'restriction' to $S^{xHx^{-1}\cap K}$ and 'corestriction' to S^K is $(\bigotimes_{V \text{ in } Y \in Vx} B)^L$. It remains to show that

$$\left(\bigotimes_{X} B\right)^{H} \bigotimes_{S^{H}} S^{L} \cong \bigotimes_{KxH} \left(\bigotimes_{Y} y_{X} B\right)^{L}. \tag{2}$$

Tensoring both sides of (2) with S over S^L over S^L yields (1). The result follows by descent [7, Théorème 5.1].

Corollary 2. Let S and R be commutative rings with S a Galois extension of R with finite group G. There is a contravariant additive functor

$$\Phi: \mathcal{H}_G \to abelian \ groups$$
 where $\Phi(\mathbb{Z}G/H) = B(S^H)$.

14 T.J. Ford

Proof. This is an immediate consequence of Proposition 2 and [12].

When Spec R is connected we can extend the above results to the infinite group case. Let R be a ring with 0 and 1 the only idempotents of R, S the separable closure of R and G the Galois group of S over R (see [4]). To define a contravariant additive functor from \mathcal{H}_G to the category of abelian groups one defines con and res as above and cor is defined for every pair $H \leq K$ such that [K:H] is finite [12]. The three homomorphisms must satisfy axioms as in Proposition 1. Let $H \leq K \leq G$ with [K:H] finite. We define the corestriction map from S^H to S^K in the following way. First note that S is the separable closure of S^K and S^H is finite over S^K . Also S^H is separable over S^K because [K:H] finite implies $[Gal(S/S^K):H]$ is finite which implies H is closed in $Gal(S/S^K)$. Thus we can imbed S^H in its normal closure T over S^K in S. Thus T is Galois over S^K . We define Cor^K as above using T in place of S. It is now a formality to check that the six axioms of Proposition 1 are satisfied.

Theorem 3. Let S, R be commutative rings with S a Galois extension of R with finite group G. Then there is a contravariant additive functor

$$\Phi^n: \mathcal{H}_G \rightarrow abelian \ groups$$

given by $\Phi^n(\mathbb{Z}G/H) = H^n(S^H, G_m)$ for each $n \ge 0$.

Proof. We will prove the theorem for Čech étale cohomology. The Čech groups agree with the derived functor groups for the sheaf of units G_m by [9, Theorem III 2.17]. The Čech cohomology groups for a scheme X are defined to be

$$\check{H}^n(X,G_m)=\lim_{\longrightarrow}\check{H}^n(\mathcal{V},\,G_m)$$

where the limit is taken over all étale covers $\mathcal{U} = (U_i \rightarrow X)$. If \mathcal{U} is a cover for X and y is a refinement of W, then there is a homomorphism induced on cohomology groups $\check{H}^n(\mathscr{V}, G_m) \to \check{H}^n(\mathscr{V}, G_m)$. First we show that every étale cover of Spec S has a refinement on which G acts. Let $G = \{x_1, ..., x_n\}$. Let U be an S-algebra and $U = {}_{x_1}U \otimes \cdots \otimes {}_{x_n}U$. If $S \to U$ is étale, then $S \to U$ is étale. We have seen above that G extends to a group of automorphisms of U. If $\mathcal{U} = (\text{Spec } U_i \rightarrow \text{Spec } S)$ is an étale cover of Spec S, then $\mathcal{U} = (\text{Spec } U_i \rightarrow \text{Spec S})$ is a refinement of \mathcal{U} and G acts on **4.** Now assume that $S \rightarrow U$ is étale and that every automorphism x in G extends to an automorphism of U. Let H be a subgroup of G. Since S is Galois over S^H with group H it follows from descent theory that $U = U^H \otimes_{S^H} S$ and that U^H is étale over S^H . Let $\mathscr{V} = (\operatorname{Spec} V_i \to \operatorname{Spec} S^H)$ be an étale cover of S^H . Then $\mathscr{U} =$ (Spec $V_i \otimes S \to \operatorname{Spec} S$) is an étale cover of S and \mathscr{U} is a refinement of \mathscr{U} . Let $\mathscr{V} = \mathscr{U}^H = (\operatorname{Spec} U_i^H \to \operatorname{Spec} S^H)$. Then \mathscr{V} is a refinement of \mathscr{V} . Let $\mathbb{Z}G/H_2 \to \mathbb{Z}G/H_1$ be a morphism in \mathcal{H}_G . For any $\mathbb{Z}G$ -module M we have $M^H \cong \operatorname{Hom}_G(\mathbb{Z}G/H, M)$. We have homomorphisms $(U_i^{H_1})^* \rightarrow (U_i^{H_2})^*$ and these maps induce a homomorphism phism $\check{H}^n(\mathscr{U}^{H_1}, G_m) \to \check{H}^n(\mathscr{U}^{H_2}, G_m)$. Taking the limit over all covers f of Spec S^{H_1}

induces $\check{H}^n(S^{H_1}, G_m) \to \check{H}^n(S^{H_2}, G_m)$. Since $(U^H)^* = (U^*)^H = \operatorname{Hom}_G(\mathbb{Z}G/H, U^*)$ we see that the functor is additive.

One can check that the maps defined in Theorem 3 on H^2 restrict to the maps of Corollary 2 on Brauer groups. The restriction and conjugation maps clearly agree. The corestriction map also agrees. Details for the corestriction maps are in [8, 6.2]. Most of the results of Roggenkamp and Scott extend to our context. We restate a few particularly useful propositions in terms of Brauer groups. If R is a commutative ring then the category \mathcal{H}_{RG} is defined by taking permutation modules $RG/H = R \otimes \mathbb{Z}G/H$ as objects and RG-module homomorphisms as maps. It turns out that any contravariant additive functor

$$\Phi: \mathcal{H}_G \to \text{abelian groups}$$

induces a contravariant R-linear functor

$$\Phi_R: \mathscr{H}_{RG} \to R$$
-modules

with $\Phi_R(RG/H) = R \otimes \Phi(\mathbb{Z}G/H)$. By $\hat{\mathscr{H}}_{RG}$ we denote the category of finite direct sums of objects in \mathscr{H}_{RG} .

Proposition 4 [11, 4.2.1]. Let G be a group, R a commutative ring and suppose that we are given a contravariant additive functor

$$\Phi: \mathscr{H}_G \rightarrow abelian \ groups.$$

Extend Φ in the obvious way to the category $\hat{\mathscr{H}}_G$. Then for any objects A, B in $\hat{\mathscr{H}}_G$: if $R \otimes A \cong R \otimes B$, then $R \otimes \Phi(A) \cong R \otimes \Phi(B)$.

If M is a Z-module and p a prime then we denote by $Z_{(p)}$ the local ring at (p) and $M_{(p)} = M \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$.

Proposition 5 [11, 4.7.4]. Let R be a commutative ring and G a finite group of automorphisms of R such that R is Galois over R^G with group G. If H is a subgroup of G and p a prime which does not divide [G:H], then the map $B(R^G)_{(D)} \rightarrow B(R^H)_{(D)}$ is injective.

Proposition 6 [11, 4.7.3]. Let R and G be as above. Let $\{H_i\}$ be a family of subgroups of G with $GCD_i\{[G:H_i]\}=1$. Then the natural map $B(R^G) \to \bigoplus_i B(R^{H_i})$ is injective.

For example, if R is a subring of $\mathbb{R}[x, y]$, which contains \mathbb{R} , then $S = R \otimes_{\mathbb{R}} \mathbb{C}$ is Galois over R with group $\mathbb{Z}/\langle 2 \rangle$. Proposition 5 implies that $B(S/R) = \text{Ker}\{B(R) \to B(S)\}$ is a 2-group since the Brauer group is torsion. If moreover $\mathbb{R}[x, y]$ is a finitely generated R-module, then it is shown in [3] that B(S) = 0. In this case

16 *T.J. Ford*

we see that B(R) is a 2-group. If R is the subring of $\mathbb{R}[x, y]$ fixed by a group H of \mathbb{R} -automorphisms such that H is generated by elements of finite order then the following proposition implies that $B(R) = B(\mathbb{R})$.

The proof of the next proposition does not use the properties of the Hecke category.

Proposition 7. Let K/k be a Galois extension of fields with finite group G. Let H be a group of k-cutomorphisms of $k[x_1, ..., x_n]$ which is generated by elements of finite order. Let R be the subring of $k[x_1, ..., x_n]$ fixed by H and $S = K \otimes_k R$. Then $B(S/R) \cong B(K/k)$.

Proof. Since K/k is Galois with group G it follows that S/R is Galois with group G. We have the following spectral sequence [4] relating $H^2(G, S^*)$ and B(S/R):

$$0 \rightarrow H^1(G, S^*) \rightarrow \operatorname{Pic} R \rightarrow (\operatorname{Pic} S)^G \rightarrow H^2(G, S^*) \rightarrow B(S/R) \rightarrow H^2(G, \operatorname{Pic} S).$$

Since H is a group of k-automorphisms, H extends to a group of K-automorphisms of $K[x_1, ..., x_n]$ and $S = K[x_1, ..., x_n]^H$. It is shown in [6] that Pic S = 0. Therefore $H^2(G, S^*) \cong B(S/R)$. But $S^* = K^*$, so $B(S/R) \cong H^2(G, K^*) \cong B(K/k)$.

As a final example we show that if G is abelian the p-torsion subgroup of B(S) can be calculated in terms of G, the p-torsion subgroup of B(R) and the p-torsion subgroups of the Brauer groups of subrings of S with Galois group the direct product of a p-group with a cyclic group (see [11, 2.4]). Suppose G contains a subgroup H of order q^2 and exponent q for some $q \neq p$. Let H_1, \ldots, H_{q+1} denote the subgroups of H of order q. Then we have an isomorphism of $\mathbb{C}H$ modules

$$\mathbb{C} H \oplus \mathbb{C}^q \cong \mathbb{C} H/H_1 \oplus \cdots \oplus \mathbb{C} H/H_{q+1}.$$

Since p does not divide |H|, standard results in representation theory allow us to replace \mathbb{C} in the displayed isomorphism with \mathbb{Z}_p , the ring of p-adic integers. Tensor both sides with \mathbb{Z}_pG over \mathbb{Z}_pH . We obtain the following isomorphism $\hat{\mathcal{H}}_{\mathbb{Z}_pG}$:

$$\mathbb{Z}_p G/1 \oplus (\mathbb{Z}_p G/H)^q \cong \mathbb{Z}_p G/H_1 \oplus \cdots \oplus \mathbb{Z}_p G/H_{q+1}.$$

Proposition 4 now yields

$$B(S)_p \oplus B(R)_p^q \cong B(S^{H_1})_p \oplus \cdots \oplus B(S^{H_{q+1}})_p$$
.

Since the Brauer group of a ring is a torsion group $\mathbb{Z}_p \otimes B(A) = B(A)_p$ is the subgroup of B(A) consisting of elements of order a power of p for any ring A. If we assume that G is abelian, G contains a subgroup H as above unless G is a direct sum of a p-group with a cyclic group.

References

- [1] F.R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965) 117-127.
- [2] F.R. DeMeyer, An action of the automorphism group of a commutative ring on its Brauer group, Pacific J. Math. 97 (1981) 327-338.
- [3] F.R. DeMeyer and T.J. Ford, On Brauer groups of surfaces, J. Algebra 86 (1984) 259-271.
- [4] F.R. Demeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math. 181 (Springer, New York, 1971).
- [5] G.J. Janusz, Automorphism groups of simple algebras and group algebras in: Philadelphia Conf. on Ring Theory (Marcel Dekker, New York, 1979).
- [6] M. Kang, Picard groups of some rings of invariants, J. Algebra 58 (1979) 455-461.
- [7] M.A. Knus and M. Ojanguran, Théorie de la descente et algèbres d'Azumaya, Lecture Notes in Math. 389 (Springer, New York, 1974).
- [8] M.A. Knus and M. Ojanguran, A norm for modules and algebras, Math. Z. 142 (1975) 33-45.
- [9] J. Milne, Étale Cohomology (Princeton Univ. Press, Princeton, NJ, 1980).
- [10] R. Perlis, On the class numbers of arithmetically equivalent fields, J. Number Theory 10 (1978) 489-509.
- [11] K. Roggenkamp and L. Scott, Hecke actions on Picard groups, J. Pure Appl. Algebra 26 (1982) 85-100.
- [12] T. Yoshida, On G-functors (II): Hecke operators and G-functors, J. Math. Soc. Japan 35 (1983) 179-190.